测绘学报 ›› 2024, Vol. 53 ›› Issue (11): 2086-2098.doi: 10.11947/j. AGCS.2024.20240092.

• 地图学与地理信息 • 上一篇    

基于后门水印和感兴趣区加密的遥感目标检测数据集版权保护算法

陈玮彤1,2(), 许鑫1,2, 朱长青3,4,5(), 任娜3,4,5   

  1. 1.扬州大学信息工程学院,江苏 扬州 225127
    2.江苏省知识管理与智能服务工程研究中心,江苏 扬州 225127
    3.虚拟地理环境教育部重点实验室(南京师范大学),江苏 南京 210023
    4.江苏省地理环境演化国家重点实验室培育建设点,江苏 南京 210023
    5.江苏省地理信息资源开发与利用协同创新中心,江苏 南京 210023
  • 收稿日期:2024-03-18 发布日期:2024-12-13
  • 通讯作者: 朱长青 E-mail:wtchen@yzu.edu.cn;zcq88@263.net
  • 作者简介:陈玮彤(1992—),男,博士,讲师,研究方向为地理信息安全。 E-mail:wtchen@yzu.edu.cn
  • 基金资助:
    国家重点研发计划(2023YFB3907100);国家自然科学基金(42201444)

Protection for remote sensing object detection datasets based on backdoor watermarking and region of interest encryption

Weitong CHEN1,2(), Xin XU1,2, Changqing ZHU3,4,5(), Na REN3,4,5   

  1. 1.School of Information Engineering, Yangzhou University, Yangzhou 225127, China
    2.Jiangsu Province Engineering Research Center of Knowledge Management and Intelligent Service, Yangzhou 225127, China
    3.Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing 210023, China
    4.State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing 210023, China
    5.Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
  • Received:2024-03-18 Published:2024-12-13
  • Contact: Changqing ZHU E-mail:wtchen@yzu.edu.cn;zcq88@263.net
  • About author:CHEN Weitong (1992—), male, PhD, lecturer, majors in geographic information security. E-mail: wtchen@yzu.edu.cn
  • Supported by:
    The National Key Research and Development Program of China(2023YFB3907100);The National Natural Science Foundation of China(42201444)

摘要:

遥感目标检测数据集的样本收集、清洗及标注过程通常需投入巨大成本,可被视为高价值的知识产权,而未授权使用或数据泄露会造成数据集拥有者的版权被侵权。为保护数据集版权,本文提出了一种基于后门水印和感兴趣区加密的遥感目标检测数据集版权保护算法。该算法通过将目标生成水印触发器嵌入原始数据集,并利用感兴趣区范围的置乱和添加扰动对数据集进行加密。在水印嵌入阶段,从原始数据集中随机选择任意样本,并将触发器嵌入样本的随机位置。数据集加密阶段分为3步,对标注文件中的感兴趣区范围进行初次加密,在加密的感兴趣区范围内添加扰动,以及基于用户独立密钥对感兴趣区进行二次加密。通过对关键信息感兴趣区进行加密而非全文加密提高算法效率,使用独立密钥降低密钥泄露风险提高安全性。在数据集分发使用阶段,授权用户可以将密文恢复为正确的感兴趣区;未授权用户若直接使用密文数据集则无法训练一个有效的模型。若发生数据泄密,恶意用户使用该数据集在训练模型时,后门水印信息会被植入模型。因此,在版权验证阶段,通过调用该模型的接口进行后门水印的验证,实现版权申明。大量试验证明,本文算法在不影响数据集质量的情况下,有效地保护了数据集版权,水印算法对微调攻击和剪枝攻击均具有较强的稳健性。

关键词: 遥感目标检测数据集, 数据集保护, 版权保护, 感兴趣区加密, 目标生成水印

Abstract:

The collection, cleansing, and annotation processes of high-quality remote sensing datasets typically entail substantial costs. Therefore, the remote sensing datasets can be regarded as intellectual properties. However, remote sensing datasets also face threats such as theft, unauthorized usage and redistribution. In order to safeguard the copyright of datasets, we propose an object detection dataset protection method based on backdoor watermarking and region of interest (ROI) encryption. The algorithm embeds object-generation watermark triggers into the original dataset and utilizes an ROI encryption algorithm to encrypt the dataset. During the watermark embedding phase, random samples are selected from the original dataset, and the triggers are embedded into random positions within the samples. During the dataset encryption phase, the ROIs in the annotation files are first initially encrypted. Then, disturbances are added within the encrypted ROIs. Finally, a unique random key is generated for each user based on a hash function, and perform secondary encryption on the initially encrypted annotation files. During the dataset decryption phase, only authorized users can decrypt the encrypted dataset, where the encrypted annotation files are restored to correct ROIs. Thereby obtaining the decrypted legitimate dataset. In the phase of asserting copyright on suspected models, a watermark test set is constructed with the object-generation watermark triggers. This test set is then inputted into the suspected model for prediction. If the watermark prediction success rate exceeds a preset threshold, it is considered that the model has utilized the protected dataset during training. Extensive experiments have demonstrated that this method effectively protects dataset copyrights without compromising dataset quality. The watermarking algorithm exhibits strong robustness against fine-tuning attacks and pruning attacks.

Key words: remote sensing dataset for object detection, dataset protection, copyright protection, ROI encryption, object-generation watermark

中图分类号: